+7 (499) 322-23-19
Пн–пт 10:00–19:00, сб-вс 10:00–17:00
Кеймбридж
Корзина пуста
Корзина пуста
+7 (499) 322-23-19
Пн–пт 10:00–19:00, сб-вс 11:00–17:00

3D-принтер для чайников: как перестать бояться и начать печатать

29 мая 2019
1054
Поделитесь в соц. сети:

Технологии 3D-печати, еще несколько лет назад казавшиеся дорогими и недоступными, с каждым днем становятся все ближе к нам. Сейчас на рынке представлено большое количество моделей 3D-принтеров, простых в управлении и доступных по цене. Выбрать 3D-принтер для начинающих теперь стало гораздо проще.

Источник: https://www.brooklinelibrary.org

Присутствуют даже модели, которыми могут пользоваться дети. Как начать печатать 3D-модели с нуля? Мы расскажем об этом подробно.

Суть технологии 3D-печати

3D-печать – это технология, при которой 3D-принтер создает материальный трехмерный объект по компьютерной модели, разработанной в программе 3D-моделирования или на основе 3D-скана. 3D-принтер – это устройство с программным управлением, которое использует данные компьютерной трехмерной модели для послойного создания физического объекта.

Источник: https://www.solvay.com

Существует много распространенных и хорошо себя зарекомендовавших технологий 3D-печати, и специалисты продолжают работать над их усовершенствованием. Однако лидерство прочно удерживают несколько наиболее удобных в применении технологий – это FDM (fused deposition modeling – моделирование методом наплавления) и стереолитография — SLA (laser stereolithography – лазерная стереолитография) и ее аналог DLP.

Как начать печатать в 3D быстро и легко

Итак, вы решили приобрести 3D-принтер – с чего начать? Прежде всего нужно  разобраться в их видах. Принтеры различаются технологиями, по которым они работают – FDM, SLA или DLP, и техническими параметрами. Разберем, какие характеристики имеют эти устройства и на что нужно ориентироваться, выбирая принтер для начала печати.

Источник: https://www.digitaltrends.com

Характеристики 3D-принтера

Присматриваясь к FDM-моделям принтеров, кроме цены, обращайте внимание на такие параметры:

  • Область печати – это габариты или объем той фигуры, которую можно напечатать на данном устройстве. Указывается в см3 или соотношении длины, ширины и высоты готового изделия. Рекомендуемые габариты для начинающих печатников – от 200 х 200 х 200 мм.
  • Доступная скорость печати (от 40 до 150 мм/сек и даже выше).
  • Разрешение печати или толщина слоя. Они напрямую связаны с внешним видом готового изделия. Начинающему пользователю стоит выбирать принтер с разрешением 50-100 мкм. Чем ниже разрешение, тем грубее выглядит готовая деталь.
  • Экструдер – деталь принтера, через которую подается расплавленный материал для печати. Существуют экструдеры для печати несколькими материалами и принтеры с несколькими экструдерами, это позволяет использовать разные материалы и цвета.

Источник: https://all3dp.com

Перед началом печати на 3D-принтере следует определиться с целями, для которых будет использоваться принтер — от них будут зависеть конструктивные особенности аппарата; определитесь с размерами изделий – от них будет зависеть рабочий объем будущего принтера; всё это повлияет на цену.

Материалы

Два наиболее популярных материала для 3D-печати по технологии FDM, с которыми начинают работать новички – это пластики ABS и PLA. ABS – прочный и долговечный материал, широко распространенный и популярный, устойчив к ударам. Из ABS делаются, например, детали интерьера в авто и конструкторы LEGO, как и многое другое. PLA – биоразлагаемый нетоксичный полимер на основе молочной кислоты, получаемой из кукурузы и сахарного тростника — экологичная замена ABS. Материал хорошо держит форму, выдерживает трение, подходит для создания подвижных деталей.

Большинство принтеров поддерживают работу с несколькими видами пластика.

Источник: filamentguide.net

Если вы планируете начать работу с SLA или DLP-принтером, то важными параметрами будут рабочий объем, точность печати, которая в случае с SLA-технологией намного выше, чем у FDM-моделей, цена расходных материалов и самого устройства.

Источник: all3dp.com

Подготовка к 3D-печати

Разработка модели

Начинать печатать в 3D лучше с простых моделей — геометрических фигур несложной конструкции. Модели можно разработать самостоятельно, с помощью специальных компьютерных программ. Наиболее легкие и часто используемые:

  • OpenSCAD;
  • AutoCad;
  • FreeCad;
  • GoogleSketchUp;
  • Blender.

Программы из этого списка бесплатные, их легко скачать и установить себе на компьютер. Кроме них, можно использовать SolidWorks, 3DS Max, Sculptris и другие.

Источник: github.com

В качестве альтернативы, можно скачать уже разработанные модели на различных интернет-ресурсах. Например, tinkercad.com, Thingiverse и другие. Главное условие – программа должна сохранять файлы в формате STL. В противном случае придется воспользоваться еще и программой-конвертером для перевода в этот формат. Подробные рекомендации по выбору ПО для моделирования, редактирования и слайсинга 3D-моделей можно найти в этой статье.

Слайсинг и G-Code

Созданную в программе модель необходимо подготовить к печати с помощью еще одного вида ПО. Специальные программы обрабатывают модель, нарезая ее на тонкие слои, в соответствии с которыми затем будет выкладываться пластик. Эта обработка называется слайсингом. Комплект инструкций, который создается в программе-слайсере, называется G-Code.

Источник: github.com

3D-принтер может иметь комплектное ПО для нарезки STL-файла, либо вам придется установить его дополнительно. Среди рекомендуемых программ – Cura, Slic3r, Repetier и другие. Подробный обзор программ для слайсинга читайте здесь.

Процесс печати

Подготовленную модель можно отправить на принтер через USB-носитель, с помощью SD-карты либо через Wi-Fi. Интерфейс большинства принтеров предназначенных для домашнего использования прост и понятен, не вызывает сложностей с запуском процесса.

Источник: www.videoblocks.com

На скорость печати влияют настройки принтера, такие как толщина слоя и заполнение, размер и сложность модели. Обычно перед тем, чтобы подержать в руках первую самостоятельно отпечатанную фигурку или деталь, проходит несколько часов.

Источник: blog.zmorph3d.com

Обеспечьте хорошую вентиляцию в помещении, где находится принтер, поскольку при его работе от нагревания пластика появляется характерный запах.

Возможные «подводные камни»

Печать первых нескольких моделей – это процесс волнующий, непредсказуемый и захватывающе-интересный. На ваших глазах будет постепенно создаваться новая вещь. Но нужно подготовиться к тому, что не сразу все пойдет гладко. Нежелательно выставлять для печати моделей высокую или максимальную скорость, желая побыстрее получить готовое изделие – спешка скажется на качестве и поверхность изделия может оказаться неровной, а контуры – неаккуратными.

Источник: www.simplify3d.com

У вас может не сразу получиться подобрать правильную температуру для материала, который планируется использовать. В принтерах используются терморезисторы с разной чувствительностью, что повлияет на температуру с которой будет плавиться пластик.

Даже материалы от одного производителя, но из разных серий или разных цветов, могут слегка отличаться по температуре плавления. Естественно, перегретый пластик может дать неровные, расплывшиеся контуры изделия. Если такое произошло, запаситесь терпением и попробуйте еще раз с другими настройками.

Еще одной возможной проблемой может стать неправильный нагрев платформы. Если платформа имеет слишком низкую температуру, это может привести к отставанию изделия и его деформации.

Источник: ultimaker.com

Обработка готового изделия

Распечатанные на FDM 3D-принтере изделия имеют неровную фактурную поверхность, что обусловлено послойной технологией их создания. На фотополимерных принтерах (SLA и DLP) модели получаются более гладкими, т.к. слои там тоньше, но и они несовершенны и требуют постобработки.

Источник: www.3dhubs.com

Есть несколько способов, с помощью которых можно сделать поверхность моделей как можно более ровной и гладкой, чтобы придать им более привлекательный вид. В домашних условиях доступно несколько видов постобработки 3D-моделей:

  • Механический. Ошкуривание поверхности наждачной бумагой или шлифовальной губкой.
  • Химический. Обработка растворителями — с помощью кисти или парами растворителя, для этого используются дихлорэтан, ацетон и другие вещества.
  • Смешанный. Полировка модели вручную с применением растворителей.

Источник: pinshape.com

Ошкуривание

Использовать наждачную бумагу или шлифовальную губку можно для моделей не имеющих мелких деталей. Это трудоемкий способ, и он не позволяет добиться глянцевой поверхности, но исключает работу с токсичными растворителями и убирает слоистость с поверхности. После ошкуривания 3D-модель можно загрунтовать и окрасить или покрыть лаком, придав аккуратный вид, либо подвергнуть химической полировке.

Источник: www.makerbot.com

Обработка растворителями

Каждому материалу печати соответствует свой растворитель. Основные растворители, которые используются для постобработки 3D-моделей — ацетон и дихлорэтан. Ацетон подходит для обработки изделий из ABS, дихлорэтан – для PLA.

Всю обработку с помощью растворителей нужно выполнять в перчатках и в хорошо проветриваемом помещении, либо на открытом воздухе. Учтите, что дихлорэтан  – летучее ядовитое соединение.

Если вы решили выравнивать поверхность изделий с помощью кисти, нужно брать кисть с натуральным ворсом. Растворитель нужно набирать в умеренном количестве и наносить быстро, не допуская появления потеков или борозд.

Источник: blog.zmorph3d.com

Для полировки берется чистая белая ткань без ворса, желательно из натуральных волокон. Растворитель наносится на ткань, затем ею нужно отполировать поверхность круговыми движениями, вплоть до появления желаемой гладкости.

При обработке парами модель помещают на платформу, лучше металлическую, и устойчиво располагают в емкости, на дно которой налит растворитель. Соприкосновения растворителя с изделием быть не должно. Емкость нагревают до появления паров, сильный нагрев не нужен. Этот способ позволяет добиться максимально ровной и гладкой поверхности модели. Также существуют специальные установки для обработки моделей парами растворителей.

Источник: www.youtube.com/watch?v=DNCHovsdv90

После выравнивания поверхности изделие можно загрунтовать и окрасить. Часто применяются акриловые грунты и краски.

Технологии 3D-печати

Технология FDM

Технология FDM (fused deposition modeling), иначе именуемая как FFF (fused filament fabrication), использует метод послойного наплавления нагретого термопластика. Изначально пластик находится в виде нити (филамента), которая нагревается до определенной температуры и укладывается слоями согласно разработанной 3D-модели.

Источник: www.3dhubs.com

Принтеры, работающие по технологии FDM, имеют специальную печатающую головку – экструдер, через которую расплавленная нить попадает в рабочее пространство. Существуют FDM-принтеры с одним или несколькими экструдерами. Также эти модели принтеров могут отличаться друг от друга разным устройство механизма перемещения экструдера в пространстве – разной кинематикой.

Этот способ 3D-печати может применяться для создания игрушек, изделий для дома, даже костюмов для косплея. Именно эту технологию чаще используют для построения визуализационных и демонстрационных моделей. FDM-принтеры за последние несколько лет упали в цене и стали наиболее доступными и применимыми для домашнего использования.

Источник: pinshape.com

FDM-принтеры имеют несколько режимов скоростей печати: 40-50 мм/сек, 80-100 мм/сек и 150 и более мм/сек. На высоких скоростях печати качество модели обычно падает. Преимущество FDM-печати перед 3D-печатью по другим технологиям — в сравнительно доступных ценах на принтеры и материалы. Среди основных недостатков можно назвать необходимость в постобработке изделий, из-за неровностей на поверхности, и меньшую детализацию, по сравнению с фотополимерными 3D-принтерами.

FDM-принтеры

FDM-принтеры отличаются диаметром используемого филамента, обычно это 1,75 и 3,0 мм. Трехмиллиметровый филамент чаще используют в промышленных принтерах, где скорость зачастую важнее гладкости поверхности, а 1,76 — наиболее распространенный диаметр, используемый и в хоббийной 3D-печати, и в профессиональной. Диаметр филамента необходимо учесть при покупке расходников.

Используемые виды пластика – ABS, PLA, поликарбонаты, полиамиды и другие полимеры. Наличие у принтера двух и более экструдеров позволяет печатать несколькими цветами пластика одновременно.

Источник: planetwifi.org

Среди популярных моделей FDM-принтеров можно назвать Anet A6, Wanhao Duplicator i3, PICASO 3D Designer X PRO.

Источник:  www.thingiverse.com

Anet A6

Anet A6 – принтер с размером построения 220 x 220 x 250 мм и 1 экструдером. Не требует постоянного подключения к компьютеру. Работает с пластиками ABS, PLA, HIPS. Толщина слоя – от 100 мкм. Подойдет для домашнего использования, создания игрушек и сувениров. Цена – от 13600 р. (уточняйте на сайте).

Подробнее о принтере читайте здесь.

При желании открыть бизнес и зарабатывать на 3D-печати стоит приобрести модель печатающую как минимум двумя филаментами одновременно – это позволит создавать гораздо более привлекательные изделия, за счет использования нескольких цветов, или более гладкие, при использовании растворимого материала для печати поддержек. Для этой цели начинающему пользователю подойдут Flyingbear P905, популярная модель MakerBot Replicator 2X и другие.

Источник: www.cnet.com

MakerBot Replicator 2X

MakerBot Replicator 2X – FDM-принтер с 2-мя экструдерами, работает с пластиком ABS и PLA. Толщина слоя – от 100 мкм. Размеры рабочей камеры — 246 x 152 x 155 мм. Есть возможность приобрести усовершенствованную версию с системой равномерного нагрева. По сравнению с более дешевыми FDM-принтерами дает более гладкую поверхность, не требует значительной постобработки. Цена – от 312000 р. (уточняйте на сайте).

Подробнее о принтере читайте здесь.

Flyingbear P905

Flyingbear P905 – принтер, оснащенный 3-мя соплами, одним основным и 2-мя опциональными, с рабочей камерой размером 220х220х210 мм и толщиной слоя от 50 мкм. Особенности конструкции позволяют получать изделия с гладкой поверхностью, часто не требующие постобработки. Подходит для печати бытовых изделий, деталей, креативных моделей, сувениров на заказ. Есть возможность экспериментировать с видами пластиков, но нужно учитывать, что максимальная температура нагрева составляет 240ºC. Цена – 29900 р. (уточняйте при заказе).

Подробнее о принтере читайте здесь.

Как заработать на FDM-принтере

Сколько можно заработать с помощью 3D-печати — зависит от типа продукции, которую планируется изготавливать, спроса на нее, цены расходников, затрат на постобработку и других факторов. При выполнении заказов, например, на изготовление костюмов для косплея, при средней сумме заказа в 30000 р., FDM-принтер может окупиться за 5-15 заказов (зависит от цены принтера).

Источник: diyphotography.net

Технология DLP

Данная технология во многом схожа с технологией SLA. Общее в их принципе работы – отверждение жидкого фотополимера светом. В технологии SLA фотополимер затвердевает при воздействии лазерного луча на конкретные области модели, а DLP использует для полимеризации ультрафиолетовый проектор и излучение попадает на весь слой изготавливаемой модели одномоментно. DLP, а тем более LCD-принтеры (использующие LCD-матрицу вместо проектора) как правило доступнее аппаратов с технологией SLA.

По технологии DLP модель формируется при постоянном подъеме и опускании платформы. Когда платформа находится в нижней точке своего движения, срабатывает ультрафиолетовый проектор и засвечивает очередной слой материала, вызывая его полимеризацию. Затем платформа поднимается, чтобы свежий слой модели оторвался от проекционной поверхности и чтобы под него попала следующая порция фотополимера, а затем модель опускается на высоту нового слоя над дном ванночки. Этот слой также засвечивается и твердеет. Процедура повторяется до полного завершения модели.

Как заработать на фотополимернике

Применяются DLP-принтеры в стоматологии, для изготовления прототипов коронок и протезов, в ювелирной промышленности, дизайне, производстве сувенирной продукции, машиностроении и других сферах.

Источник: sinterex.com

Положительная сторона метода – в возможности изготавливать модели с высокой детализацией и гладкой поверхностью, не требующей такой серьезной постобработки, как при печати по технологии FDM. Точность печати по технологии DLP сопоставима с точностью технологии SLA и начинается от 12 микрон у отдельных устройств, по сравнению с минимально возможными 50 мкм у FDM-моделей.

Источник: 3dprintingmedia.network

Недостатком технологии можно назвать довольно высокую стоимость расходных материалов. Цена на фотополимерные смолы начинается от 80$ за литр, тогда как килограмм пластиковой нити для FDM-печати можно приобрести за 35$.

DLP-принтеры

На рынке сегодня представлены различные модели DLP-принтеров. Присутствуют и бюджетные, подходящие для использования дома, и достаточно дорогостоящие, предназначенные для частого использования и масштабного производства.

Anycubic LCD Photon

Anycubic LCD Photon – DLP-принтер с рабочей камерой 115х65х155 мм. Толщина слоя – от 25 мкм. Имеет полноцветный сенсорный экран, который значительно облегчает работу и управление процессом. Высокая точность печати на уровне профессиональных установок, хотя по габаритам принтер вполне помещается на обычном рабочем столе и подходит для применения дома. Имеет систему вентиляции с фильтром воздуха. Цена – от 33210 р. (цена может изменяться, уточняйте на сайте).

Подробнее о принтере читайте здесь.

Micromake SLA 

Принтер Micromake SLA имеет рабочую камеру с размерами 108х68х200 мм и позволяет создавать изделия с толщиной слоя от 20 мкм. Во время работы на принтер надевается специальный корпус, который препятствует распространению запаха при полимеризации. Сенсорный экран позволяет наблюдать за процессом печати и своевременно его корректировать. Цена модели – 68572 р. Цена может изменяться, уточняйте на сайте.

Подробнее о принтере можно почитать здесь.

PhotoCentric Liquid Crystal Precision

Принтер PhotoCentric Liquid Crystal Precision имеет высокую производительность работы и подходит для профессионального применения. Работает с широким диапазоном расходных материалов, может использоваться в сферах, требующих очень высокой точности изделий – ювелирное дело, стоматологические клиники, прототипы сложных инженерных конструкций и дизайнерские модели.

Рабочая камера принтера имеет габариты 123х69х160 мм. Толщина слоя – от 25 мкм. Цена – 276000 р. (необходимо уточнять при заказе).

Подробнее о принтере читайте здесь.

Чтобы узнать больше о фотополимерниках и подобрать подходящую модель читайте нашу статью о них.

Какую технологию выбрать?

Технология FDM больше подходит для печати моделей больших размеров, не требующих высокой детализации. Расходные материалы для нее – пластики ABS, PLA и другие, недороги и постоянно есть в продаже. По этой технологии можно быстро и просто изготовить игрушку, несложный инженерный или дизайнерский прототип, сувенир или бытовую деталь. Недостаток – грубая шероховатая поверхность, в большинстве случаев требующая постобработки.

Источник: all3dp.com FDM-принт после печати и после химической полировки.

Технология SLA или близкая к ней DLP позволяют создавать объекты малых размеров с высокой детализацией. Это могут быть изделия стоматологического назначения, прототипы ювелирных изделий, инженерных моделей сложной конструкции. Стереолитография позволяет получить изделие с гладкой поверхностью, требующее минимальной постобработки.

Источник: www.protobroker.co.uk

Если вы приобретаете 3D-принтер, чтобы освоить печать с нуля и, возможно, начать на этом зарабатывать в будущем, лучше попробовать начать с принтера FDM. Это не потребует значительных финансовых вложений и позволит изучить тонкости 3D-печати на довольно простых в обращении устройствах.

SLA или DLP-принтеры предназначены для изготовления более сложных по конструкции моделей. Стоимость принтеров и расходных материалов этой категории окажется выше, поэтому начинающему пользователю стоит выбирать их либо при наличии некоторого опыта в 3D-печати, либо для применения в конкретной сфере, где эта технология необходима – стоматология, ювелирное дело, инженерное конструирование и т.д.

Промышленные технологии

Кроме распространенных среди начинающих FDM, SLA и DLP-технологий, которые позволяют создавать небольшое количество копий, существуют промышленные технологии. Их цель – создание высокоточных прототипов, 3D-печать моделей для автомобильной, авиационной и других отраслей промышленности. Кроме пластика, для печати могут использоваться металлы, стекло, керамика, композитные материалы.

Источник: dddfactory.fr

SLM

Технология SLM – выборочная лазерная плавка, при которой, с помощью лазеров высокой мощности, из металлических порошков создаются трехмерные объекты. Позволяет создавать модели из тугоплавких и особо прочных металлов и сплавов, таких как титан, кобальт-хром, нержавеющая сталь и специализированные сплавы. Часто применяется для создания полых моделей, прототипов сложных конструкций с большим количеством отверстий и полостей, которые невозможно создать более традиционными методами производства. Также используется в медицине, для создания ортопедических имплантатов.

SLS

Технология выборочного лазерного спекания, или SLS, состоит в последовательном спекании слоев порошкообразного материала с применением мощных лазерных установок. Расходные материалы – различные пластики и композиты. Эта технология позволяет печатать модели любой сложности без создания опорных структур, как это происходит при печати по технологии SLA или FDM.

Источник: www.3dprintingmedia.network

DMLS

DMLS – технология прямого лазерного спекания металлов. Используется для производства металлических деталей сложной формы. По сути — специализированный вариант SLS для металлов, где частицы металлического порошка спекаются под действием лазера.. Технология DMLS применяется в аэрокосмической, стоматологической, медицинской отрасли и других областях, где необходимо изготовление сложных металлических деталей.

MJM

Технология многоструйного моделирования MJM сочетает в себе элементы SLA, 3DP (струйной трехмерной печати) и FDM — она может использовать фотополимеры, печатает по струйному принципу и наносит материал сверху вниз. Построение моделей происходит с помощью печатной головки, имеющей большое количество сопел – от 96, до 448 в современных моделях. Используемые материалы – термопластики, воски и фотополимерные смолы. Для MJM характерна высокая точность – от 16 микрон. Технология применяется для создания прототипов небольших размеров с высокой степенью детализации. Сфера применения – стоматология, разработка электронных компонентов, ювелирное дело, промышленный дизайн.

Источник: www.stratasys.com

PolyJet

Альтернативой MJM стала технология PolyJet – создание моделей путем послойного отверждения жидких фотополимерных материалов под действием УФ-лучей. Отличается высоким качеством поверхности и точностью печати. Применяется вымываемая поддержка. Для объектов размером до 50 мм точность находится в пределах 20-85 мкм. Применяется для создания выжигаемых моделей, а также мастер-моделей для литейных форм и вакуумной формовки.

Выводы

Освоить азы 3D-печати начинающему будет несложно. Современные 3D-принтеры просты в управлении и часто имеют необходимое установленное ПО. Выбирая для себя первый 3D-принтер, можно начать с простой бюджетной модели FDM или SLA-технологии, а затем перейти на более функциональные и сложные устройства, которые помогут получать более совершенные результаты.

Выбор 3D-принтеров, функций, возможностей и перспектив огромен. В Top 3D Shop обязательно посоветуют, какая модель будет лучше всего соответствовать вашим запросам, возможностям и задачам.

1 голос, в среднем: 5 из 5
Эта информация оказалась полезной?

Да Нет


Читайте также
22 октября 2015 20038
Как начать бизнес с настольным 3d-принтером?
Краткий обзор основных способов заработать в сфере 3d печати
Читать далее
07 мая 2015 9628
Как выбрать 3D принтер? Инфографика от Top 3D Shop
Представляем вашему вниманию инфографику о том, как выбрать 3D-принтер
Читать далее
02 июня 2019 717
Обзор 3D-принтера Anycubic 4Max Pro
Обзор, характеристики, образцы принтов Anycubic 4Max Pro и видео о нем.
Читать далее
07 июня 2019 899
Кто есть кто в 3D: производители России
Основные отечественные производители 3D-принтеров, примеры моделей.
Читать далее
Технопарк «Калибр», Годовикова, 9, строение 16, офис 1.2 Москва, Россия +7 (499) 322-23-19