Координатно-измерительные машины и 3D-сканеры в промышленности
Здравствуйте! С вами Top 3D Shop и в очередном обзоре мы рассказываем о координатно-измерительных машинах, технологиях, по которым они работают, и их применении. Узнайте больше из этой статьи.
Содержание
- Введение
- Механическое 3D-сканирование
- Оптическое 3D-сканирование
- Мультисенсорные приборы
- Роботизированные КИМ
- Примеры использования
- Заключение
Введение
Источник: aberlink.com
Координатно-измерительные машины (КИМ) – устройства, воссоздающие в цифровом виде геометрию физических объектов, путем измерения с помощью зонда дискретных точек на их поверхности. В КИМ используются различные типы зондов: механические, оптические, лазерные и структурированного света. Положение зонда может контролироваться оператором вручную или с помощью компьютера. КИМ определяют положение зонда по его смещению от референтной позиции в трехмерной декартовой системе координат (т.е. по осям XYZ). В дополнение к перемещению зонда вдоль осей X, Y и Z, многие машины позволяют регулировать угол зонда для измерения участков, которые в противном случае были бы недоступны.
Источник: starrapid.com
Первая двухосевая КИМ была разработана Ferranti Company of Scotland в пятидесятых годах прошлого века для точных измерений компонентов военной продукции. Первые трехосевые модели начали появляться в шестидесятых годах (DEA, Италия), компьютерное управление дебютировало в начале семидесятых, а первая коммерческая КИМ с цифровым управлением была разработана и представлена на рынок компанией Browne&Sharpe в начале восьмидесятых. Сегодня компании DEA и Browne&Sharpe являются частью шведской многонациональной корпорации Hexagon AB.
Механическое 3D-сканирование
Ручные КИМ
Источник: directindustry.com
Мобильные и легкие ручные КИМ обеспечивают высококачественные измерения в любом месте производственного цеха и предназначены для измерения таких сложных элементов, как отверстия, прорези и грани, а также для анализа GD&T (геометрии, размеров и допусков) и сравнения с CAD-моделями в реальном времени. Ручные КИМ, как правило, беспроводные, что дает возможность измерения в самых труднодоступных местах.
Источник: directindustry.com
Такие устройства не требуют высокой квалификации оператора, не имеют движущихся частей, точны и уже откалиброваны. В ряде случаев ручные КИМ могут использоваться в комплексе с другими измерительными или сканирующими устройствами, что существенно расширяет сферу применения тех и других.
Горизонтальные рычажные КИМ
Источник: metrology.news
Координатно-измерительные машины с горизонтальным рычагом применяются там, где нужен неограниченный доступ к детали со всех сторон. Вся конструкция КИМ находится на массивном основании, исключающем любые колебания во время измерений. В случае применения для автоматизированного метрологического контроля, КИМ с горизонтальным рычагом обладают самым высоким быстродействием, по сравнению с другими конструктивными исполнениями контактных средств измерения. Современные КИМ с горизонтальным рычагом, как правило, оборудуются защитой от столкновений, чтобы защитить людей от травм и материалы от повреждений.
Мостовые КИМ
Источник: metrology.news
Одни из самых точных, мостовые КИМ способны измерять даже самые маленькие отверстия и пазы. Жесткая конструкция позволяет избегать тепловых и иных динамических деформаций, а широкий набор сменных датчиков, зондов и щупов позволит создать точную цифровую копию исследуемой детали или сопоставить готовое изделие с моделью CAD. Мостовые КИМ, как правило, оснащаются массивным гранитным рабочим столом. Производится в вариантах с неподвижным мостом и движущимся рабочим столом, и наоборот, с движущимся мостом и неподвижным столом. Машины имеет собственную эффективную систему виброизоляции.
Портальные КИМ
Источник: directindustry.com
Портальные КИМ – наиболее крупные из всех измерительных машин и предназначены для измерения деталей очень больших размеров. Портальная конструкция открытого типа облегчает загрузку, измерение и перемещение крупногабаритных и тяжелых деталей. Направляющие рельсы портальных КИМ изготавливаются из высококачественных материалов (как правило керамических), обладающих температурной стабильностью, хорошей жесткостью и минимальной геометрической деформацией.
Оптическое 3D-сканирование
Лазерное 3D-сканирование
Источник: 3d-scantech.com
Лазерные 3D-сканеры — еще один способ получения точных данных о размерах деталей. Сканирование поверхностей с помощью сенсорного зондирования в нескольких точках не дает представления о ее форме. Лазерное сканирование – технология, использующая лазерные лучи для измерения и захвата формы детали. Лазерный сканер использует разницу в отражениях лазерных лучей от различных точек поверхности, которые затем обрабатываются в программном обеспечении для получения облака точек.
Источник: whatech.com
Лазерное сканирование генерирует миллионы точек, чтобы дать детальное трехмерное изображение всей поверхности с очень высоким уровнем точности и детализации. Лазерные 3D-сканеры не нуждаются в физическом контакте с объектами исследований, что делает их удобными для проведения неразрушающего или дистанционного контроля. Как правило, устройства используют сетку из перекрещенных лазерных лучей, параллельные или одиночные лазерные линии. Так как лазеры – источники когерентного света, лазерные сканеры слабо чувствительны ко внешним условиям: уровню освещения или загрязненности среды.
3D-сканирование структурированным светом
Источник: 1zu1prototypen.com
Оптические 3D-сканеры — самый доступный способ получения точных данных об объекте в трех измерениях. Сканирование с помощью структурированного света — более простой и дешевый, по сравнению с лазерным, вариант оптического 3D-сканирования. На исследуемую деталь проецируется эталонный геометрический рисунок, изображение которого искажается поверхностью объекта. Две видеокамеры считывают это изображение под разными углами, а программное обеспечение сканера экстраполирует полученные данные в цифровую модель поверхности.
Источник: 1zu1prototypen.com
Хотя метрологические системы, основанные на принципе структурированного света, обладают меньшей точностью, чем лазерные 3D-сканеры, они дешевле, проще в эксплуатации и с их помощью можно безопасно сканировать живые объекты, например человека.
Источник: 1zu1prototypen.com
Контрольно-измерительные приборы, использующие структурированный свет, можно дополнить ручными измерительными инструментами, дав тем самым системе возможность исследования отверстий или углублений, недоступных для сканирования.
Мультисенсорные приборы
Источник: interestingengineering.com
Комбинируя контактные и оптические измерения в одной системе, мультисенсорные измерительные машины сочетают в себе достоинства обоих подходов: скорость работы оптических систем с возможностью измерения самых труднодоступных участков сканируемой детали, — это приборы, которые совмещают в себе свойства 3D-сканера и функции КИМ, обычно представляющие из себя 3D-сканер с дополнительным щупом.
Такие устройства просты в настройке, компактны и универсальны, способны эксплуатироваться в самых тяжелых условиях, но при этом имеют возможность работы с очень крупными деталями.
Источник: metrology.news
Мультисенсорные измерительные машины не имеют какого-то единой универсальной конструкции, поэтому их исполнение может существенно отличаться в зависимости от целей использования или производителя.
Роботизированные КИМ
Роботы лучше всего подходят для автоматизации метрологических измерений. Роботы никогда не устают, не теряют концентрацию, обладают высокой повторяемостью и гибкостью, менее требовательны к занимаемой площади и внешним условиям. Роботы в состоянии непрерывно работать там, где человек не в состоянии находиться физически, например, в условиях опасного производства. Датчиком может быть контрольный зонд, система машинного зрения, координатно-измерительная машина, оптический 3D-сканер или любой другой из множества доступных контрольных устройств. Роботы способны работать как с самыми крупными деталями, так и с изделиями, требующими особо бережного обращения. Можно с уверенностью сказать, что не существует таких метрологических задач, с которыми не справились бы роботизированные измерительные и контрольные системы.
Примеры использования
Сканирование большой шестерни для реконструкции, DeWys Engineering
Источник: youtu.be
Клиент обратился в компанию DeWys Engineering для реконструкции изношенной большой литой шестерни из коробки передач. Для трехмерного сканирования применялся роботизированный восьмиосевой мультисенсорный комплекс Faro Platinum Arm LLP V3 с возможностью как лазерного, так и механического 3D-сканирования. После сбора всех данных и проверки отверстий/пазов, трехмерное облако точек было обработано в Geomagic Design X. Полученный 3D-проект был экспортирован в Soildworks, в котором, после дополнительной детализации, специалисты создали файл с инструкциями изготовления точно такой же шестерни на зубофрезерном станке.
Метрологические поверки больших партий товара, Computer Aided Technology
Источник: cati.com
Менеджер по продукции Боб Ренелла рассказывает:
«Когда постоянно требуется измерять большие партии деталей с высокой точностью и скоростью, необходимо улучшить повторяемость и минимизировать время цикла. Традиционные контрольно-измерительные машины (CMM) и программное обеспечение для них слишком медленны и не удовлетворяют современным требованиям для проверки партии. Каждая деталь должна проходить через оператора контроля качества, и это создает узкое место в производственном процессе.
У компании есть три варианта: купить еще одну традиционную КИМ и нанять еще несколько операторов для ее обслуживания, передать на аутсорсинг некоторые из их групповых проверок и увеличить накладные расходы при снижении качества измерений, заменить существующую КИМ на более современное оборудование.»
Источник: creaform3d.com
«Обновление контрольного оборудования до новейшего беспроводного Creaform HandyProbe в комплекте с C-Track, оснащенных двумя камерами, позволило оператору свободно перемещаться по предприятию, не привязываясь к гранитному столу старой машины в лаборатории контроля качества. Кроме того, теперь размер детали перестал быть важным – измерение больше не ограничено рычагом КИМ. Это сэкономило огромное количество времени, которое раньше тратилось на перевозку деталей в лабораторию и обратно.»
«Использование ПО PolyWorks Inspector от INNOVMETRIC, вместе с Creaform HandyProbe, значительно упростило самые трудоемкие операции – теперь оператор в реальном времени имеет четкие пошаговые инструкции по проведению поверки.»
Контроль отверстия для вала рычага экскаватора, ScanTech TrackScan со световой ручкой TrackProbe
Источник: 3d-scantech.com
Рычаг ковша является важной деталью экскаватора, испытывающей большие нагрузки, со временем приводящие к износу втулки вала. Если отверстие вала не соответствует его размеру, это приводит ко все увеличивающимся колебаниям ковша во время работы и к окончательному выходу из строя всего механизма. Следовательно, обязателен периодический метрологический контроль размера отверстий рычага. Традиционные контрольно-измерительные машины, способные поверять детали такого размера с требуемой точностью, стоят очень дорого и устанавливаются стационарно, что приводит к затратам времени и средств на перевоз детали от места эксплуатации до метрологической лаборатории.
Источник: 3d-scantech.com
3D-сканер ScanTech TrackScan, разработанный совместно с норвежской компанией Metronor, способен создать точную трехмерную цифровую копию рычага экскаватора длиной до 10 метров прямо на месте эксплуатации. Сканер не требует использования маркеров, а в сочетании со световым пером TrackProbe позволяет измерять отверстия практически любого диаметра и глубины с очень высокой точностью. На сканирование данного рычага экскаватора, обработку результатов и метрологическую поверку ушло всего 15 минут.
Заключение
Источник: creaform3d.com
Исследования в области метрологии не стоят на месте. Каждое новое технологическое усовершенствование основано на реальных потребностях экспертов по контролю качества, которые сталкиваются со все более строгими требованиями и должны полагаться на полностью готовые к работе контрольно-измерительные аппараты, КИМ и 3D-сканеры.
Для поддержания качества продукции, а значит конкурентоспособности предприятия, следует своевременно обновлять парк оборудования.
-
14 июня 2020Добрый день!
Возможно я заблуждаюсь, поправьте, но ATOS (что у Вас в статье) работающий по технологии структурированного света в объеме 320х240х240мм выдает точность при измерении отклонений формы - 5 мкм, при измерении отклонений диаметра 11 мкм , а предел допускаемой абсолютной погрешности при измерении расстояния 16 мкм со скоростью сканирования 12 миллионов точек за 0,8 сек и плотностью точек 81 мкм.
Одновременно лидера рынка лазерного сканирования Creaform с топовым устройством HandySCAN Black Elite с полем 310х350 мм и с заявленной точностью 25 мкм и объемной точностью 20 мкм + 40 мкм/м, со скоростью сканирования 1,3 миллиона точек в сек и плотностью точек 100 мкм является более точным и быстрым устройством?
Возможно я что-то не правильно понимаю, но как по мне "структурированный свет" кладет технологию "лазерное сканирование" на "обе лопатки" при сравнении точности и ряда других характеристик.
Оставить комментарий